If the mean and standard deviation of a binomial variate X are 8 and 2 respectively, then P(X≥1) is : |
$\frac{1}{2^{16}}$ $\frac{1}{2^{12}}$ $1-\frac{1}{2^{12}}$ $1-\frac{1}{2^{16}}$ |
$1-\frac{1}{2^{16}}$ |
The correct answer is Option (4) → $1-\frac{1}{2^{16}}$ In Binomial Distribution, Mean, $μ=np=8$ ....(1) Standard Deviation, $σ=\sqrt{np(1-p)}=2$ ....(2) from (1) and (2) we get, $np(1-p)=2$ $⇒8(1-p)=2$ $⇒p=\frac{1}{2}$ $⇒n=\frac{8}{p}=16$ $∴P(X≥1)=1-P(X=0)$ $=1-{^{16}C}_0(\frac{1}{2})^0(\frac{1}{2})^{16}$ $=1-\frac{1}{2^{16}}$ |