The general solution of the differential equation $x (\frac{dy}{dx}) = y + x \tan (\frac{y}{x})$ is |
$\tan(\frac{y}{x})= cx$, where c is an arbitary constant $\sin(\frac{y}{x})= cx$, where c is an arbitary constant $\tan(\frac{x}{y})= cx$, where c is an arbitary constant $\sin(\frac{y}{x})= cx^2$, where c is an arbitary constant |
$\sin(\frac{y}{x})= cx$, where c is an arbitary constant |
The correct answer is Option (2) → $\sin(\frac{y}{x})= cx$, where c is an arbitary constant Given the differential equation: $x \frac{dy}{dx} = y + x \tan\left(\frac{y}{x}\right)$ Let $v = \frac{y}{x} \Rightarrow y = vx$ Differentiate both sides: $\frac{dy}{dx} = v + x \frac{dv}{dx}$ Substitute into the original equation: $x(v + x \frac{dv}{dx}) = vx + x \tan(v)$ $xv + x^2 \frac{dv}{dx} = vx + x \tan(v)$ $x^2 \frac{dv}{dx} = x \tan(v)$ $x \frac{dv}{dx} = \tan(v)$ $\frac{dv}{\tan(v)} = \frac{dx}{x}$ Use identity $\frac{1}{\tan v} = \cot v$: $\cot v\, dv = \frac{dx}{x}$ Integrate both sides: $\int \cot v\, dv = \int \frac{dx}{x}$ $\log|\sin v| = \log|x| + \log C$ $\sin v = Cx$ Recall $v = \frac{y}{x}$: $\sin\left(\frac{y}{x}\right) = Cx$ This is the general solution. |