Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Inverse Trigonometric Functions

Question:

$∫e^x(tan\, x + log_e secx)dx=$

Options:

$e^xlog_esecx+C$

$log_e\, sec\, x+C$

$e^xtan\, x +C$

$e^xsec\, x +C$

Correct Answer:

$e^xlog_esecx+C$

Explanation:

The correct answer is option (1) → $e^x\log_e\sec x+C$

I=$∫e^x(\tan x + \log_e \sec x)dx$

$f'(x)=\tan x,f(x)=\log_e \sec x$

so $I = e^xf(x)+C$

$=e^x\log_e\sec x+C$