If $I(m, n) = \int\limits_0^1t^m(1+t)^ndt$, then the expression for I(m, n) in terms of I(m + 1, n – 1) is |
$\frac{2^n}{m+1}-\frac{n}{m+1}I(m+1,n-1)$ $\frac{n}{m+1}I(m+1,n-1)$ $\frac{2^n}{m+1}+\frac{n}{m+1}I(m+1,1-1)$ $\frac{m}{n+1}I(m+1,n-1)$ |
$\frac{2^n}{m+1}-\frac{n}{m+1}I(m+1,n-1)$ |
$I(m, n) = \int\limits_0^1t^m(1+t)^n\,dt$ $=(1+t)^n\frac{t^{m+1}}{m+1}|_0^1-\int\limits_0^1n(1+t)^{n-1}\frac{t^{m+1}}{m+1}$ $=\frac{2^n}{m+1}-\frac{n}{m+1}\,I(m+1,1-1)$ Hence (A) is the correct answer. |