A convex lens of glass (n = 1.5) has a focal length 18 cm in air. When it is immersed in water (n = 4/3), the focal length increases to: |
18 cm 36 cm 54 cm 72 cm |
54 cm |
The correct answer is Option (3) → 54 cm To determine the new focal length of a convex lens immersed in water, $\frac{1}{f}=(n_{lens}-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $n_{lens}=1.5$ and $f_{air}=18cm$ $\frac{1}{18}=(1.5-1)\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $\left(\frac{1}{R_1}-\frac{1}{R_2}\right)=\frac{1}{9}$ $∴\frac{1}{f_{water}}=(n_{lens}-n_{medium})\left(\frac{1}{R_1}-\frac{1}{R_2}\right)$ $=(1.5-\frac{4}{3})(\frac{1}{9})=(\frac{9-8}{6})(\frac{1}{9})$ $⇒f_{water}=54cm$ |