If $f(x)=\left\{\begin{matrix}ax-1& if\, x ≥1\\2x+1& if\,x < 1\end{matrix}\right.$ is continuous at $x = 1$, then $a$ equals |
0 3 4 2 |
4 |
The correct answer is Option (3) → 4 We are given: f(x) = { ax − 1 if x ≥ 1 2x + 1 if x < 1 } To ensure continuity at x = 1, we require: limx→1⁻ f(x) = limx→1⁺ f(x) = f(1) Left-hand limit: limx→1⁻ f(x) = limx→1⁻ (2x + 1) = 2(1) + 1 = 3 Right-hand limit: limx→1⁺ f(x) = limx→1⁺ (ax − 1) = a(1) − 1 = a − 1 For continuity: a − 1 = 3 ⇒ a = 4 |