The separation between the plates of a parallel plate capacitor of capacitance 2 pF is 0.5 mm. The area of the plates of the capacitor is (Given: $ε_0 = 8.85 × 10^{-12} C^2 N^{-1} m^{-2}$) |
$520\, cm^2$ $71\, cm^2$ $113\, cm^2$ $1.13\, cm^2$ |
$1.13\, cm^2$ |
The correct answer is Option (4) → $1.13\, cm^2$ Capacitance of a parallel plate capacitor: $ C = \frac{\epsilon_0 A}{d} $ Given: $ C = 2 \times 10^{-12} \, F $ $ d = 0.5 \, mm = 5 \times 10^{-4} \, m $ $ \epsilon_0 = 8.85 \times 10^{-12} \, F/m $ Now, $ A = \frac{C \, d}{\epsilon_0} $ $ A = \frac{(2 \times 10^{-12})(5 \times 10^{-4})}{8.85 \times 10^{-12}} $ $ A = \frac{1 \times 10^{-15}}{8.85 \times 10^{-12}} $ $ A = 1.13 \times 10^{-4} \, m^2 $ Area of the plates = $1.13 \times 10^{-4} \, m^2$ |