Let f(x) be the function given by $f(x)=3 x^5-5 x^3+21 x+3 \sin x+4 \cos x+5$. Then, (a) f(x) is increasing on R and f(x) = 0 has exactly one negative root |
(a) only (b), (c) (a), (d) (b), (d) |
(a) only |
We have, $f(x)=3 x^5-5 x^3+21 x+3 \sin x+4 \cos x+5$ $\Rightarrow f'(x)=15 x^4-15 x^2+21+3 \cos x-4 \sin x$ $\Rightarrow f'(x)=\phi(x)+\psi(x)$, where $\phi(x)=15 x^4-15 x^2+21$ and $\psi(x)=3 \cos x-4 \sin x$ Now, $\phi(x)=15 x^4-15 x^2+21$ $\Rightarrow \phi(x)=15\left(x^4-x^2+\frac{7}{5}\right)$ $\Rightarrow \phi(x)=15\left\{\left(x^2-\frac{1}{2}\right)^2+\frac{23}{20}\right\}$ $\Rightarrow \phi(x)=15\left(x^2-\frac{1}{2}\right)^2+\frac{69}{4} \geq \frac{69}{4}$ for all $x \in R$ and, $\psi(x)=3 \cos x-4 \sin x$ $\Rightarrow -5 \leq \psi(x) \leq 5$ for all $x \in R$ ∴ $f'(x) \geq \frac{69}{4}-5>0$ for all $x \in R$ ⇒ f(x) is increasing on R. We observe that f(0) = 9 > 0 and $f(-\infty)=-\infty$ Therefore, y = f(x) cuts x-axis exactly ones. Hence, f(x) = 0 has exactly one negative root. |