If $s=a+b+c$, then the value of $Δ=\begin{vmatrix}s+c& a&b\\c&s+a&b\\c&a&s+b\end{vmatrix}$, is |
$2s^2$ $2s^3$ $s^3$ $3s^3$ |
$2s^3$ |
We have, $Δ=\begin{vmatrix}s+c& a&b\\c&s+a&b\\c&a&s+b\end{vmatrix}$ $⇒Δ=\begin{vmatrix}s+a+b+c& a&b\\s+a+b+c&s+a&b\\s+a+b+c&a&s+b\end{vmatrix}$ [Applying $C_1→C_1 +C_2+C_3$] $⇒Δ=(s+a+b+c)\begin{vmatrix}1& a&b\\1&s+a&b\\1&a&s+b\end{vmatrix}$ $⇒Δ=2s\begin{vmatrix}1& a&b\\0&s&0\\0&0&s\end{vmatrix}$ [Applying $R_2 → R_2 - R_1, R_3→R_3-R_1$] $⇒Δ=2s^3$ |