Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Determinants

Question:

If $s=a+b+c$, then the value of $Δ=\begin{vmatrix}s+c& a&b\\c&s+a&b\\c&a&s+b\end{vmatrix}$, is

Options:

$2s^2$

$2s^3$

$s^3$

$3s^3$

Correct Answer:

$2s^3$

Explanation:

We have,

$Δ=\begin{vmatrix}s+c& a&b\\c&s+a&b\\c&a&s+b\end{vmatrix}$

$⇒Δ=\begin{vmatrix}s+a+b+c& a&b\\s+a+b+c&s+a&b\\s+a+b+c&a&s+b\end{vmatrix}$  [Applying $C_1→C_1 +C_2+C_3$]

$⇒Δ=(s+a+b+c)\begin{vmatrix}1& a&b\\1&s+a&b\\1&a&s+b\end{vmatrix}$

$⇒Δ=2s\begin{vmatrix}1& a&b\\0&s&0\\0&0&s\end{vmatrix}$ [Applying $R_2 → R_2 - R_1, R_3→R_3-R_1$]

$⇒Δ=2s^3$