An expression for the frequency of revolution of the electron in the Bohr's orbit is : |
$\frac{me^4}{4\epsilon^2_0h^3}\times \frac{1}{n^3}$ $\frac{me^4}{8\epsilon^2_0h^3}\times \frac{1}{n^3}$ $\frac{me^4}{3\epsilon^2_0ch^3}\times \frac{1}{n^3}$ $\frac{me^4}{8\epsilon^2_0ch^2}\times \frac{1}{n^3}$ |
$\frac{me^4}{4\epsilon^2_0h^3}\times \frac{1}{n^3}$ |
The correct answer is option (1) : $\frac{me^4}{4\epsilon^2_0h^3}\times \frac{1}{n^3}$ In Bohr's orbit $mvr=\frac{nh}{2\pi}$ ............. (i) $\frac{e^2z}{4\pi \epsilon r^2}=\frac{mv^2}{r}$ $mv^2r=\frac{e^2z}{4\pi \epsilon_0}$ ............ (ii) On putting the value of mvr from equation (i) $v\times \frac{nh}{2\pi }\times \frac{e^2z}{4\pi \epsilon_0}$ $v=\left(\frac{e^2z}{2nh}\right)$ $\frac{m\times e^2z}{2nh}z=\frac{nh}{2\pi}$ $r=\frac{n^2h^2}{\pi me^2z}$ Now, $f=\frac{v}{2\pi r}$ $=\frac{e^2z}{\frac{2nh}{\frac{2\pi n^2h^2}{\pi me^2z}}}$ $=\frac{me^4}{4\epsilon^2_0h^3}\times \frac{1}{n^3}$ |