A body is projected vertically up with a speed v0 = $\sqrt{gR}$ from earth’s surface where g = 9.8 m/sec2 and R = radius of earth = 6.4 × 106 m. What is the maximum height attained by the body. |
6400 Km 36000 Km 42400 Km 29600 Km |
6400 Km |
Let the body of mass m be projected from point 1 and attains a height h at point 2. Conservation of energy of the body between 1 and 2 yields, U1 + K1 = U2 + K2 $\Rightarrow\left(-\frac{GMm}{R}\right)+\left(\frac{1}{2} mv_1^2\right)=\left(-\frac{GMm}{R+h}\right)+\left(\frac{1}{2} mv_2^2\right)$ Putting $v_2=0$ and $v_1=v_0$, we obtain, $\frac{1}{2} mv_0^2=G M m\left(\frac{1}{R}-\frac{1}{R+h}\right)$ $\Rightarrow \frac{v_0^2}{2}=\frac{GMh}{R(R+h)}$ $\Rightarrow \frac{v_0^2}{2}=\left(\frac{GM}{R^2}\right)\left(\frac{Rh}{R+h}\right)$ $\Rightarrow \frac{v_0^2}{2}=\frac{gRh}{R+h} \quad\left(∵ \frac{G M}{R^2}=g\right)$ $\frac{R+h}{h}=\frac{2 gR}{v_0^2}$ $\Rightarrow \frac{R}{h}+1=\frac{2 gR}{v_0^2}$ $\Rightarrow h=\frac{R}{\frac{2 gR}{v_0^2}-1}$ Putting v0 = $\sqrt{gR}$ , we obtain, ⇒ h = R = 6400 km. |