Which of the following statements are correct ? (A) $var (aX+b)= a^2 var (X)$ (B) $var(X)=E(X^2)-\begin{Bmatrix} E(X)\end{Bmatrix}^2 $ (C) $E(aX+b)=aE(X)+b$ (D) $E(X)=\sum\limits^{n}_{i=1}p_ix^2_i $ Choose the correct answer from the options given below : |
(A), (C) Only (A), (B) Only (A), (B), (C) Only (A), (C), (D) Only |
(A), (B), (C) Only |
The correct answer is Option (3) → (A), (B), (C) Only (A) The variance of a linear transformation $ax+b$ is, $var (aX+b)= a^2 var (X)$ (B) The definition of variance $Var(X)=E(X^2)-\{E(X)\}^2$ (C) The expectation of a linear transformation, $E(aX+b)=aE(X)+b$ |