If x2 = (\(\sqrt {2}\) -1)\(\frac{1}{2}\), then find the value of x2 + \(\frac{1}{x^2}\). |
2 2\(\sqrt {2}\) 0 1 |
2\(\sqrt {2}\) |
x2 = \(\frac{1}{\sqrt {2} - 1}\) × \(\frac{\sqrt {2} + 1}{\sqrt {2} + 1}\) = \(\sqrt {2}\) + 1 \(\frac{1}{x^2}\) = \(\sqrt {2}\) - 1 x2 + \(\frac{1}{x^2}\) = \(\sqrt {2}\) + 1 + \(\sqrt {2}\) - 1 = 2\(\sqrt {2}\) |