$\underset{x→2}{\lim}\frac{(\cos α)^x+(\sin α)^x-1}{x-2}$ is equal to |
∞ $(\cos α)^2+(\sin α)^2$ 0 none of these |
none of these |
$\underset{x→2}{\lim}\frac{(\cos α)^x+(\sin α)^x-1}{x-2}=\underset{x→2}{\lim}\frac{(\cos α)^x\log_e(\cos α)+(\sin α)^x\log_e(\sin α)}{1}$ Using L’Hospital rule $=\cos^2α(\log_e\cos α)+\sin^2α\log_e(\sin α)$ |