The corner points of the bounded feasible region determined by the system of linear constraints are (0, 0), (5, 0), (6, 5), (6, 8), (4, 10), (0, 8). Let $Z = 3x - 4y$ be the objective function. The minimum value of Z occurs at |
(0, 0) (5, 0) (0, 8) (4, 10) |
(0, 8) |
The correct answer is Option (3) → (0, 8) $Z = 3x - 4y$ $\text{Evaluate } Z \text{ at each corner point:}$ $Z(0, 0) = 3(0) - 4(0) = 0$ $Z(5, 0) = 3(5) - 4(0) = 15$ $Z(6, 5) = 3(6) - 4(5) = 18 - 20 = -2$ $Z(6, 8) = 3(6) - 4(8) = 18 - 32 = -14$ $Z(4, 10) = 3(4) - 4(10) = 12 - 40 = -28$ $Z(0, 8) = 3(0) - 4(8) = 0 - 32 = -32$ $\text{Minimum value of } Z = -32 \text{ at } (0, 8)$ |