If \(2\begin{bmatrix}3 & 4\\5 & x\end{bmatrix}+\begin{bmatrix}1 & y\\0 & 1\end{bmatrix}=\begin{bmatrix}7 & 0\\10 & 5\end{bmatrix}\), then the value of x - y is: |
3 1 10 8 |
10 |
\(2\begin{bmatrix}3 & 4\\5 & x\end{bmatrix}=\begin{bmatrix}6 & 8\\10 & 2x\end{bmatrix}\) ...(i) According to questions, $\begin{bmatrix}6 & 8\\10 & 2x\end{bmatrix}+\begin{bmatrix}1 & y\\0 & 1\end{bmatrix}=\begin{bmatrix}7 & 0\\10 & 5\end{bmatrix}$ from eq. (i) $\begin{bmatrix}7 & 8+y\\10 & 2x+1\end{bmatrix}$ ⇒ 8 + y = 0 y = 0 - 8 y = -8 and 2x + 1= 5 2x = 5 - 1 = 4 2x = 4 $x = \frac{4}{2}=2⇒x=2$ So, value of x - y = 2 - (-8) = 10 |