If tan θ $=\frac{20}{21},$ then the value of $\frac{sinθ-cosθ}{sinθ+cosθ}$ is : |
$\frac{-1}{41}$ $\frac{27}{21}$ $\frac{29}{35}$ $\frac{-29}{31}$ |
$\frac{-1}{41}$ |
tan θ = \(\frac{20}{21}\) { tan θ = \(\frac{P}{B}\) } Now, \(\frac{sinθ - cosθ}{sinθ + cosθ}\) = \(\frac{P - B}{P + B}\) = \(\frac{20 - 21}{20 + 21}\) = \(\frac{-1}{41}\) |