A thin convex lens of refractive index 1.5 has focal length $f_1$. When immersed in a liquid of refractive index $\frac{5}{3}$ length is found to be $f_2$. The relationship between $f_1$ and $f_2$ is: |
$ f_2=-5f_1$ $ f_2=-\frac{f_1}{5}$ $ f_1=-5f_2$ $ f_1=-3f_2$ |
$ f_2=-5f_1$ |
The correct answer is Option (1) → $ f_2=-5f_1$ Lens maker’s formula: $\frac{1}{f} = \left(\frac{n_\text{lens}}{n_\text{medium}} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ In air ($n_\text{medium} = 1$): $\frac{1}{f_1} = (1.5 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = 0.5 \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ In liquid ($n_\text{medium} = \frac{5}{3}$): $\frac{1}{f_2} = \left(\frac{1.5}{5/3} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ $\frac{1.5}{5/3} = 1.5 \cdot \frac{3}{5} = 0.9$ So, $\frac{1}{f_2} = (0.9 - 1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = -0.1 \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ From air case: $\frac{1}{R_1} - \frac{1}{R_2} = \frac{1}{0.5 f_1} = \frac{2}{f_1}$ Thus, $\frac{1}{f_2} = -0.1 \cdot \frac{2}{f_1} = -\frac{0.2}{f_1}$ ⟹ $f_2 = -5 f_1$ Answer: $f_2 = -5 f_1$ |