Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

If the function $f(x)=x^2$ is one-to-one and onto, then the domain D and range R of f(x) are respectively:

Options:

D=[-1, 1], R = set of all real numbers

D = set of all real numbers, R = $[0, \infty)$

D = $[0, \infty)$, R = set of all real numbers

D = $[0, \infty)$, R = $[0, \infty)$

Correct Answer:

D = $[0, \infty)$, R = $[0, \infty)$

Explanation:

The correct answer is Option (4) → D = $[0, \infty)$, R = $[0, \infty)$

$f(x)=x^2$ is one-one

⇒ domain must be [0, ∞)

as negative numbers would nullify one-one property

for $x∈[0, ∞)$

$f(x)∈[0, ∞)$ = Range