If ABCDEF is a regular hexagon with $\vec{AB}=\vec a$ and $\vec{BC}=\vec b$, then $\vec{CE}$ equals |
$\vec b-\vec a$ $-\vec b$ $\vec b-2\vec a$ none of these |
$\vec b-2\vec a$ |
In ΔABC, we have $\vec{AB}+ \vec{BC}=\vec{AC}⇒\vec{AC} = \vec a + \vec b$ ...(i) Since AD is parallel to BC and AD = 2 BC. Therefore, $\vec{AD}=2\vec b$ In ΔACD, we have $\vec{AC}+\vec{CD}=\vec{AD}$ $⇒\vec{CD}=2\vec b-(\vec a+\vec b)=\vec b-\vec a$ $∴\vec{CE}=\vec{CD}+\vec{DE}=\vec b-\vec a+(-\vec a)=\vec b-2\vec a$ |