Domain of $f(x)=\sin^{-1}\left(\frac{[x]}{\{x\}}\right)$ where [.] and {.} denote the greatest integer function and fractional part respectively, is |
(0, 1) (−1, 1) ~ {0} (−2, 2) ~ {−1, 0, 1} none of these |
(0, 1) |
We must have, $-1≤\frac{[x]}{\{x\}}≤1$ From $-1≤\frac{[x]}{\{x\}}$, we get $\frac{\{x\}-[x]}{\{x\}}≥0⇒\frac{x}{\{x\}}>0⇒x∈(0,∞)∼I^+$ From $\frac{[x]}{\{x\}}≤1$ we get, $\frac{[x]-\{x\}}{\{x\}}≤0⇒[x]≤\{x\}$ where $\{x\} ≠ 0$ $⇒x∈(0,∞)∪(0,1)$. Thus domain is (0, 1) |