Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Relations and Functions

Question:

Domain of $f(x)=\sin^{-1}\left(\frac{[x]}{\{x\}}\right)$ where [.] and {.} denote the greatest integer function and fractional part respectively, is

Options:

(0, 1)

(−1, 1) ~ {0}

(−2, 2) ~ {−1, 0, 1}

none of these

Correct Answer:

(0, 1)

Explanation:

We must have, $-1≤\frac{[x]}{\{x\}}≤1$

From $-1≤\frac{[x]}{\{x\}}$, we get $\frac{\{x\}-[x]}{\{x\}}≥0⇒\frac{x}{\{x\}}>0⇒x∈(0,∞)∼I^+$

From $\frac{[x]}{\{x\}}≤1$ we get, $\frac{[x]-\{x\}}{\{x\}}≤0⇒[x]≤\{x\}$ where $\{x\} ≠ 0$

$⇒x∈(0,∞)∪(0,1)$. Thus domain is (0, 1)