Target Exam

CUET

Subject

-- Mathematics - Section A

Chapter

Indefinite Integration

Question:

The area enclosed by the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$ is given by :

Options:

$3\int\limits^{4}_{0}\sqrt{9-x^2}dx$

$\frac{3}{4}\int\limits^{4}_{0}\sqrt{9-x^2}dx$

$3\int\limits^{4}_{0}\sqrt{16-x^2}dx$

$\frac{3}{4}\int\limits^{4}_{0}\sqrt{16-x^2}dx$

Correct Answer:

$3\int\limits^{4}_{0}\sqrt{16-x^2}dx$

Explanation:

The correct answer is option (3) → $3\int\limits^{4}_{0}\sqrt{16-x^2}dx$

$\frac{x^2}{16}+\frac{y^2}{9}=1$

so $y=\frac{3}{4}\sqrt{16-x^2}$

area of $\frac{1}{4}th$ of ellipse in 1st quadrant

→ $\int\limits_0^4\frac{3}{4}\sqrt{16-x^2}dx$

$=3\int\limits_0^4\sqrt{16-x^2}dx$