The curves $x=y^2$ and $x y=K$, cut at right angles if: |
$K^2=512$ $8 K^2=1$ $4 K^2=1$ $K^2=9$ |
$8 K^2=1$ |
The correct answer is Option (2) → $8 K^2=1$ $x=y^2$ ...(1) $x y=K$ ...(2) differentiating wrt x eq. (1) $1=2y\frac{dy}{dx}$, $y+x\frac{dy}{dx}=0$ $m_1=\frac{1}{2y}$, $m_2=-\frac{y}{x}$ so $m_1m_2=-1⇒\frac{1}{2x}=1$ so $x=\frac{1}{2}$ from (1) $\frac{1}{2}=y^2$ from (2) $xy=k$ $x^2y^2=k^2⇒(\frac{1}{2})^2×\frac{1}{2}=K^2$ $8K^2=1$ |