The curves $x=y^2$ and $x y=a^3$ cut orthogonally at a point, then a = |
$\frac{1}{3}$ 3 2 $\frac{1}{2}$ |
$\frac{1}{2}$ |
We have, $x=y^2$ ...(i) and, $x y=a^3$ ...(ii) These two curves intersect at $P\left(a, a^2\right)$ Now, $x=y^2 \Rightarrow \frac{d y}{d x}=\frac{1}{2 y} \Rightarrow m_1=\left(\frac{d y}{d x}\right)_P=\frac{1}{2 a^2}$ and, $x y=a^3 \Rightarrow x \frac{d y}{d x}+y=0 \Rightarrow \frac{d y}{d x}=-\frac{y}{x} \Rightarrow m_2=\left(\frac{d y}{d x}\right)_P=-a$ If the two curves intersect orthogonally, then $m_1 m_2=-1 \Rightarrow \frac{1}{2 a^2} \times-a=-1 \Rightarrow a=\frac{1}{2}$ |