Differential coefficient of $log_e[log_e(log_ex^5)]$ with respect to x is : |
$\frac{5}{xlog_e(log_ex^5)}$ $\frac{5}{xlog_e(x^5)log_e(log_ex^5)}$ $\frac{5x^4}{log_e(x^5)log_e(log_ex^5)}$ $\frac{5x}{log_e(x^5)log_e(log_ex^5)}$ |
$\frac{5}{xlog_e(x^5)log_e(log_ex^5)}$ |
The correct answer is Option (2) → $\frac{5}{xlog_e(x^5)log_e(log_ex^5)}$ $y=\log\log\log x^5$ $\frac{dy}{dx}=\frac{5x^4}{x^5(\log(\log x^5))(\log x^5)}$ Using chain rule $=\frac{5}{x(\log(\log x^5))(\log x^5)}$ |