Values of $\int\limits_{-1 / 2}^{+1 / 2} \cos x \log \frac{1+x}{1-x} d x$ is : |
1/2 -1/2 0 none of these |
0 |
$I=\int\limits_{-1 / 2}^{1 / 2} \cos x \log \frac{1+x}{1-x} dx$ $f(x)=\cos x \ln \frac{1+x}{1-x}$ $f(-x)=\cos(-x) \ln \frac{1-x}{1+x}$ $=-\cos (x) \ln \left(\frac{1+x}{1-x}\right)=-f(x)$ f(x) is an odd function [Using $\int\limits_{-a}^a f(x) d x=0$ if f(x) = f(x)] hence I = 0 Hence (3) is the correct answer. |