Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Indefinite Integration

Question:

\(\int \frac{\sec^2x}{\sqrt{\tan^2x+4}}dx=\)

Options:

\(log|\tan x|+c\)

\(log|\tan x+\sec x|+c\)

$\log\left|\tan x+\sqrt{\tan^2x+4}\right|+C$

\(log|\tan x-\sqrt{tan^x+4}|+c\)

Correct Answer:

$\log\left|\tan x+\sqrt{\tan^2x+4}\right|+C$

Explanation:

\(\int \frac{\sec^2xdx}{\sqrt{\tan^2x+4}}\)

$=\int\frac{d(\tan x)}{\sqrt{\tan^2x+4}}$

$=\log\left|\tan x+\sqrt{\tan^2x+4}\right|+C$