Let $f: R→ R$ be a function defined as $f(x)=2x^3-21x^2+36x-20,$ then : (A) maximum value of f(x) is -3 (B) minimum value of f(x) is -128 (C) maximum value exists at x= 6 (D) minimum value exists at x= 1 Choose the correct answer from the options given below |
(A), (B) Only (A), (B), (C) Only (B), (C) , (D) Only (C) , (D) Only |
(A), (B) Only |
The correct answer is Option (1) → (A), (B) Only $f(x)=2x^3-21x^2+36x-20$ $f'(x)=6x^2-42x+36$ ∴ for critical points $f'(c)=0$ $⇒6x^2-42x+36=0$ $⇒2x^2-14x+12=0$ $⇒x^2-7x+6=0$ $⇒x^2-6x-x+6=0$ $⇒(x-6)(x-1)=0$ $⇒x=6\,or\,1$ and, for maximum value $f''(c)<0$, $⇒f''(1)<0$ $⇒12(1)-42=-30<0$ ∴ Maximum value at $x = 1$ Minimum value at $x = 6$ $f(1)=2(1)^3-21(1)^2+36(1)-20$ $=2-21+36-20=-3$ → Maximum Value $f(6)=2(6)^3-21(6)^2+36(6)-20$ $=-128$ → Minimum Value |