Target Exam

CUET

Subject

-- Mathematics - Section B1

Chapter

Applications of Derivatives

Question:

The value of x for which the slope of the curve $y =-x^3 +3x^2+ 9x - 27 $ is maximum, is :

Options:

-1

1

2

-2

Correct Answer:

1

Explanation:

The correct answer is Option (2) → 1

$y =-x^3 +3x^2+ 9x - 27 $

Slope $S=y'=-3x^2+6x+9$

so $S'=-6x+6=0$

$⇒x=1$

$S''=-6$

so $x=1$ (point of maxima)

so $S_{max}=S(1)=-3+6+9=12$

at $x=1$