The value of x for which the slope of the curve $y =-x^3 +3x^2+ 9x - 27 $ is maximum, is : |
-1 1 2 -2 |
1 |
The correct answer is Option (2) → 1 $y =-x^3 +3x^2+ 9x - 27 $ Slope $S=y'=-3x^2+6x+9$ so $S'=-6x+6=0$ $⇒x=1$ $S''=-6$ so $x=1$ (point of maxima) so $S_{max}=S(1)=-3+6+9=12$ at $x=1$ |