For the function $f(x) = e^{-2x} (2-x)^2$, the point of local maxima is: |
$x=1$ $x=2$ $x=3$ $x = 5/2$ |
$x=3$ |
The correct answer is Option (3) → $x=3$ Given: $f(x) = e^{-2x}(2 - x)^2$ To find local maxima, compute $f'(x)$ and solve $f'(x) = 0$ Use product rule: $f'(x) = \frac{d}{dx}[e^{-2x}] \cdot (2 - x)^2 + e^{-2x} \cdot \frac{d}{dx}[(2 - x)^2]$ $= (-2e^{-2x})(2 - x)^2 + e^{-2x} \cdot 2(2 - x)(-1)$ $= e^{-2x} \left[ -2(2 - x)^2 - 2(2 - x) \right]$ $= -2e^{-2x}(2 - x)[(2 - x) + 1] = -2e^{-2x}(2 - x)(3 - x)$ Set $f'(x) = 0$: $-2e^{-2x}(2 - x)(3 - x) = 0$ Since $e^{-2x} \ne 0$, we get: $(2 - x)(3 - x) = 0$ ⟹ $x = 2$ or $x = 3$ Check sign of $f'(x)$ around $x = 2$ and $x = 3$: Pick $x = 1.5$: both $(2 - x)$ and $(3 - x)$ are positive ⟹ $f'(x) < 0$ Pick $x = 2.5$: $(2 - x) < 0$, $(3 - x) > 0$ ⟹ $f'(x) > 0$ Pick $x = 3.5$: both terms negative ⟹ $f'(x) < 0$ So, $f'(x)$ changes from positive to negative at $x = 3$ ⟹ local maximum at $x = 3$ |