The value of $\int\limits_{-\pi / 6}^{\pi / 6}\left(4 x^5+x \sin ^2 x+\tan ^3 x+2\right) dx$ is: |
$\frac{2 \pi}{3}$ $\pi$ 0 2 |
$\frac{2 \pi}{3}$ |
The correct answer is Option (1) → $\frac{2 \pi}{3}$ $I=\int\limits_{-\pi / 6}^{\pi / 6}\left(4 x^5+x \sin ^2 x+\tan ^3 x+2\right) dx$ $4 x^5+x \sin ^2 x+\tan ^3 x$ → odd function 2 → even function $I=\int\limits_{-\pi / 6}^{\pi / 6}0+2dx$ $=2×\frac{\pi}{3}=\frac{2 \pi}{3}$ |