Let [x] denote the greatest integer less than or equal to x and g(x) be given by $g(x)=\left\{\begin{array}{cl} [f(x)], & x \in(0, \pi / 2) \cup(\pi / 2, \pi) \\ 3 \quad, & x=\frac{\pi}{2} \end{array}\right.$ where, $f(x)=\frac{2\left(\sin x-\sin ^n x\right)+\left|\sin x-\sin ^n x\right|}{2\left(\sin x-\sin ^n x\right)-\left|\sin x-\sin ^n x\right|}, n \in R^{+},$ then at $x=\frac{\pi}{2}, g(x)$ is |
continuous and differentiable when n > 1 continuous and differentiable when 0 < n < 1 continuous but not differentiable when n > 1 continuous but not differentiable when 0 < n < 1 |
continuous and differentiable when n > 1 |
Clearly, $0<\sin x<1$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$.
CASE I: When n > 1 In this case, we have $\sin x>\sin ^n x$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ $\Rightarrow \sin x-\sin ^n x>0$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ $\Rightarrow \left|\sin x-\sin ^n x\right|=\sin x-\sin ^n x$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ ∴ $f(x)=\frac{2\left(\sin x-\sin ^n x\right)+\left(\sin x-\sin ^n x\right)}{2\left(\sin x-\sin ^n x\right)-\left(\sin x-\sin ^n x\right)}=3 $ $\Rightarrow [f(x)]=3$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ Thus, we have $g(x)=3$ for all $x \in(0, \pi)$ Clearly, it is continuous and differentiable at $x=\pi / 2$
CASE II: When 0 < n < 1 In this case, we have $\sin x<\sin ^n x$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ $\Rightarrow \sin x-\sin ^n x<0$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ $\Rightarrow \left|\sin x-\sin ^n x\right|=-\left(\sin x-\sin ^n x\right)$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ ∴ $f(x)=\frac{2\left(\sin x-\sin ^n x\right)-\left(\sin x-\sin ^n x\right)}{2\left(\sin x-\sin ^n x\right)+\left(\sin x-\sin ^n x\right)}=\frac{1}{3}$ $\Rightarrow [f(x)]=0$ for all $x \in(0, \pi / 2) \cup(\pi / 2, \pi)$ Thus, we have $g(x)= \begin{cases}0, & \text { for all } x \in(0, \pi / 2) \cup(\pi / 2, \pi) \\ 3, & \text { for } x=\pi / 2\end{cases}$ Clearly, it is discontinuous and hence non-differentiable also at $x=\pi / 2$. |