A Television manufacturing company can sell x television per month at $₹\left(40-\frac{x}{2}\right)$ each. The cost of production of x television per month is $₹\frac{x^2}{2}$. The maximum profit of the company per month is : |
₹400 ₹200 ₹800 ₹1600 |
₹400 |
The correct answer is Option (1) → ₹400 The revenue $R(x)$ is, $R(x)=x\left(40-\frac{x}{2}\right)=40x-\frac{x^2}{2}$ $P(x)=R(x)-C(x)$ $=\left(4x-\frac{x^2}{2}\right)-\frac{x^2}{2}$ $=40x-x^2$ $\frac{d(P(x))}{dx}=40-2x=0$ $x=20$ $P(20)=(40×20)-(20)^2$ $=800-400$ $=400$ |