If $0<x<\pi$ and the matrix $\left[\begin{array}{cc}4 \sin x & -1 \\ -3 & \sin x\end{array}\right]$ is singular, then the values of x are : |
$\frac{\pi}{3}, \frac{2 \pi}{3}$ $\frac{\pi}{6}, \frac{5 \pi}{6}$ $\frac{\pi}{6}, \frac{\pi}{3}$ $\frac{\pi}{6}, \frac{2 \pi}{3}$ |
$\frac{\pi}{3}, \frac{2 \pi}{3}$ |
Matrix is singular ⇒ $\left[\begin{array}{cc}4 \sin x & -1 \\ -3 & \sin x\end{array}\right] = 0$ ⇒ 4 sin2x - 3 = 0 ⇒ $\sin^2x = \frac{3}{4}$ ⇒ $\sin x = \frac{\sqrt{3}}{2}, \frac{-\sqrt{3}}{2} \Rightarrow x = \frac{\pi}{3}, \frac{2\pi}{3}, \frac{4\pi}{3}$ but as it is given $0<x<\pi$ so only first two values chosen Option: 1 |