The nearest integral value of the shaded area shown below is: |
3 square units $\frac{11}{3}$ square units $\frac{14}{3}$ square units 6 square units |
$\frac{14}{3}$ square units |
The correct answer is Option (3) → $\frac{14}{3}$ square units The area under the curve $y = \sqrt{x}$ from $x = 1$ to $x = 4$ is given by: $A = \int_{1}^{4} \sqrt{x} \, dx$ Using the power rule for integration: $A = \int_{1}^{4} x^{\frac{1}{2}} \, dx = \frac{2}{3} x^{\frac{3}{2}} \bigg|_{1}^{4}$ $= \frac{2}{3} \left( 4^{\frac{3}{2}} - 1^{\frac{3}{2}} \right)$ $= \frac{2}{3} \left( 8 - 1 \right) = \frac{2}{3} \times 7 = \frac{14}{3} \approx 4.67$ The nearest integer value is $5$. |