Consider the curves, $x^2+y^2 =1$ and $(x-1)^2 +y^2=1.$ Area enclosed by the two curves is : |
$\left(\frac{\pi }{3}-\sqrt{3}\right) sq.units $ $\left(\frac{2\pi }{3}-\frac{\sqrt{3}}{2}\right) sq.units $ $\left(\frac{2\pi }{3}+\frac{\sqrt{3}}{2}\right) sq.units $ $\left(\frac{\pi }{3}+\sqrt{3}\right) sq.units $ |
$\left(\frac{2\pi }{3}-\frac{\sqrt{3}}{2}\right) sq.units $ |
The correct answer is Option (2) → $\left(\frac{2\pi }{3}-\frac{\sqrt{3}}{2}\right) sq.units $ by symmetry area I = area II = area III = area IV finding intersection $x^2+y^2=1$ $(x-1)^2+y^2=1$ $⇒x^2=(x-1)^2$ $x-1=x$ so $x=\frac{1}{2}$ so area = $4×\int\limits_{\frac{1}{2}}^1\sqrt{1-x^2}dx$ $=4×\left[\frac{x}{2}\sqrt{1-x^2}+\frac{1}{2}\sin^{-1}x\right]_{\frac{1}{2}}^1$ $=π-\frac{\sqrt{3}}{2}-\frac{π}{3}=\frac{2π}{3}-\frac{\sqrt{3}}{2}$ |