If the area of an equilateral triangle is increasing at the rate of $4\sqrt{3} cm^2/sec$, then the rate of increase of its perimeter when the side is 4cm, is |
2 cm/sec 3 cm/sec 4 cm/sec 6 cm/sec |
6 cm/sec |
The correct answer is Option (4) → 6 cm/sec Let the side of the equilateral triangle be $x$ cm. Area: $A = \frac{\sqrt{3}}{4}x^2$ Differentiate both sides w.r.t. time $t$: $\frac{dA}{dt} = \frac{\sqrt{3}}{2}x \cdot \frac{dx}{dt}$ Given: $\frac{dA}{dt} = 4\sqrt{3}$ and $x = 4$ $4\sqrt{3} = \frac{\sqrt{3}}{2} \cdot 4 \cdot \frac{dx}{dt} = 2\sqrt{3} \cdot \frac{dx}{dt}$ $\Rightarrow \frac{dx}{dt} = \frac{4\sqrt{3}}{2\sqrt{3}} = 2$ Perimeter: $P = 3x$ $\frac{dP}{dt} = 3 \cdot \frac{dx}{dt} = 3 \cdot 2 = {6}$ |