In LCR series circuit with resistance R. inductive reactance $X_L$ and capacitive reactance $X_C$, the maximum current '$I_0$' at resonance is given as: |
$I_0=\frac{V_0}{(X_L-X_C)}$ $I_0=\frac{V_0}{R}$ $I_0=\frac{V_0}{\sqrt{R^2+(X_L-X_C)^2}}$ $I=\frac{V_0}{R^2}$ |
$I_0=\frac{V_0}{R}$ |
The correct answer is Option (2) → $I_0=\frac{V_0}{R}$ The maximum current $(I_0)$ occurs when the impedance is at its minimum, which is simply R. $∴I_0=\frac{V_0}{R}$ |