Arrange the de-Broglie wavelengths associated with the following in the decreasing order: (Given: $h = 6.6 × 10^{-34} Js$) (A) an electron (mass $9 × 10^{-31} kg$) in the hydrogen atom moving with the speed of $3 × 10^6 m s^{-1}$ Choose the correct answer from the options given below: |
(D), (B), (C), (A) (A), (D), (C), (B) (B), (C), (D), (A) (C), (A), (D), (B) |
(A), (D), (C), (B) |
The correct answer is Option (2) → (A), (D), (C), (B) Formula: $\lambda = \frac{h}{mv}$ Given $h = 6.6 \times 10^{-34} \, Js$ (A) Electron: $m = 9 \times 10^{-31} \, kg, \; v = 3 \times 10^{6} \, m/s$ $\lambda_A = \frac{6.6 \times 10^{-34}}{(9 \times 10^{-31})(3 \times 10^{6})}$ $= \frac{6.6 \times 10^{-34}}{2.7 \times 10^{-24}} = 2.44 \times 10^{-10} \, m$ (B) Bullet: $m = 0.04 \, kg, \; v = 10^{3} \, m/s$ $\lambda_B = \frac{6.6 \times 10^{-34}}{0.04 \times 10^{3}}$ $= \frac{6.6 \times 10^{-34}}{40} = 1.65 \times 10^{-35} \, m$ (C) Ball: $m = 0.06 \, kg, \; v = 1 \, m/s$ $\lambda_C = \frac{6.6 \times 10^{-34}}{0.06}$ $= 1.1 \times 10^{-32} \, m$ (D) Dust particle: $m = 1.0 \times 10^{-9} \, kg, \; v = 3.3 \, m/s$ $\lambda_D = \frac{6.6 \times 10^{-34}}{3.3 \times 10^{-9}}$ $= 2.0 \times 10^{-25} \, m$ Comparison: $\lambda_A = 2.44 \times 10^{-10}$ $\lambda_D = 2.0 \times 10^{-25}$ $\lambda_C = 1.1 \times 10^{-32}$ $\lambda_B = 1.65 \times 10^{-35}$ Order (decreasing): A > D > C > B |