If $y=e^{\frac{1}{2}\log_et}$ and $x=\log_3(e^{t^2})$, then $\frac{dy}{dx}$ is equal to: |
$\frac{1}{4t\sqrt{t}}$ $\frac{e^{\frac{1}{2}\log_et}}{2t^2}$ $\frac{\log_e3}{4t\sqrt{t}}$ $\frac{2t^2}{e^{\frac{1}{2}\log_et}}$ |
$\frac{\log_e3}{4t\sqrt{t}}$ |
The correct answer is Option (3) → $\frac{\log_e3}{4t\sqrt{t}}$ $y=e^{\frac{1}{2}\log_et}$ $⇒y=t^{\frac{1}{2}}=\sqrt{t}$ $(∵e^{\log_ea})$ $⇒\frac{dy}{dt}=\frac{1}{2}t^{-\frac{1}{2}}=\frac{1}{2\sqrt{t}}$ ...(1) Now, $x=\log_3(e^{t^2})$ $x=t^2\log_3e$ $(∵\log_ab^c=c\log_ab)$ $x=\frac{t^2}{\log_e3}$ $\left(∵\log_e3=\frac{1}{\log_e3}\right)$ $⇒\frac{dx}{dt}=\frac{2t}{\log_e3}$ ...(2) From (1) & (2) $\frac{dy}{dx}=\frac{\frac{1}{2\sqrt{t}}}{\frac{2t}{\log_e3}}=\frac{1}{2\sqrt{t}}×\frac{\log_e3}{2t}=\frac{\log_e3}{4t\sqrt{t}}$ |