If X has a Poisson distribution such that $P(X=1)=P(X=2)$ then $P(X=3)$ is : |
$\frac{4}{3}e^{-2}$ $\frac{1}{3}e^{-3}$ $\frac{2}{3}e^{-2}$ $\frac{5}{3}e^{-4}$ |
$\frac{4}{3}e^{-2}$ |
The correct answer is Option (1) → $\frac{4}{3}e^{-2}$ for a Poisson distribution, $P(X=k)=\frac{e^{-λ}λ^k}{k!},k=0,1,2$ $P(X=1)=P(X=2)$ $\frac{e^{-λ}λ^1}{1!}=\frac{e^{-λ}λ^2}{2!}$ $λ=\frac{λ^2}{2}⇒λ=2$ $∴P(X=3)=\frac{e^{-2}.2^3}{3!}=\frac{4}{3}e^{-2}$ |