Target Exam

CUET

Subject

-- Applied Mathematics - Section B2

Chapter

Probability Distributions

Question:

If X has a Poisson distribution such that $P(X=1)=P(X=2)$ then $P(X=3)$ is :

Options:

$\frac{4}{3}e^{-2}$

$\frac{1}{3}e^{-3}$

$\frac{2}{3}e^{-2}$

$\frac{5}{3}e^{-4}$

Correct Answer:

$\frac{4}{3}e^{-2}$

Explanation:

The correct answer is Option (1) → $\frac{4}{3}e^{-2}$

for a Poisson distribution,

$P(X=k)=\frac{e^{-λ}λ^k}{k!},k=0,1,2$

$P(X=1)=P(X=2)$

$\frac{e^{-λ}λ^1}{1!}=\frac{e^{-λ}λ^2}{2!}$

$λ=\frac{λ^2}{2}⇒λ=2$

$∴P(X=3)=\frac{e^{-2}.2^3}{3!}=\frac{4}{3}e^{-2}$