The value of $\int \frac{1}{x^2\left(x^4+1\right)^{3 / 4}} d x$, is |
$\left(1+\frac{1}{x^4}\right)^{1 / 4}$ $-\left(1+\frac{1}{x^4}\right)^{1 / 4}$ $-\frac{1}{4}\left(1+\frac{1}{x^4}\right)^{1 / 4}$ none of these |
$-\left(1+\frac{1}{x^4}\right)^{1 / 4}$ |
We have, $I =\int \frac{1}{x^2\left(x^4+1\right)^{3 / 4}} d x$ $\Rightarrow I =\int \frac{1}{x^5\left(1+\frac{1}{x^4}\right)^{3 / 4}} d x$ $\Rightarrow I =-\frac{1}{4} \int\left(1+\frac{1}{x^4}\right)^{-3 / 4}\left(\frac{-4}{x^5}\right) d x$ $\Rightarrow I=-\frac{1}{4} \int\left(1+\frac{1}{x^4}\right)^{-3 / 4} d\left(1+\frac{1}{x^4}\right)$ $\Rightarrow I=-\frac{1}{4}\left\{\frac{\left(1+\frac{1}{x^4}\right)^{1 / 4}}{1 / 4}\right\}+C=-\left(1+\frac{1}{x^4}\right)^{1 / 4}+C$ |