If Brewster's angle be 'θ', then the critical angle is |
$\sin^{-1} (\cot θ)$ $(90-θ)$ $\sin^{-1} (\tan θ)$ $\frac{θ}{2}$ |
$\sin^{-1} (\cot θ)$ |
The correct answer is Option (1) → $\sin^{-1} (\cot θ)$ According to Brewster's Angle, $\tan θ_B=\frac{μ_1}{μ_2}$ ...(1) and, Critical Angle is, $\sin θ_C=\frac{μ_1}{μ_2}$ ...(2) According to (1) and (2), $\sin θ_C=\frac{1}{\tan θ_B}=\cot θ_B$ $∴θ_C=\sin^{-1} (\cot θ_B)$ |