The surface area of a cube increases at a rate of 6 square centimeters per second. How fast is the volume increasing when the length of an edge is 10 centimeters? |
$15 cm^3/s$ $7 cm^3/s$ $9 cm^3/s$ $7.5 cm^3/s$ |
$15 cm^3/s$ |
A, surface area of cube = $6a^2$ $⇒\frac{dA}{dt}=12a\frac{da}{dt}$ $⇒6=12a\frac{da}{dt}$ $⇒\frac{da}{dt}=\frac{1}{2a}$ V, Volume = $a^3$ $⇒\frac{dV}{dt}=3a^2\frac{da}{dt}=3a^2×\frac{1}{2a}$ $=\frac{3}{2}a$ $∴\left.\frac{dV}{dt}\right|_{a=10}=\frac{3}{2}×10=15cm^3/s$ |