A random variable X has the following probability distribution:
The mean of the distribution is : |
$\frac{43}{16}$ $\frac{39}{8}$ $\frac{31}{24}$ $\frac{39}{16}$ |
$\frac{39}{16}$ |
The correct answer is Option (4) → $\frac{39}{16}$ Sum of all probabilities is 1. $⇒2k+k+4k+6k+3k=1$ $⇒16k=1$ $⇒k=\frac{1}{16}$ Mean of the random variable X. $E(X)=∑XP(X)$ $E(X)=(0×2k)+(1×k)+(2×4k)+(3×6k)+(4×3k)$ $=39k=39×\frac{1}{16}=\frac{39}{16}$ |