Let f : R → R be given by $f(x+y)=f(x)-f(y)+2 x y+1$ for all $x, y \in R$. If f(x) is everywhere differentiable and f'(0) = 1, then f'(x) = |
$2 x+1$ $2 x-1$ $x+1$ $x-1$ |
$2 x-1$ |
We have, $f(x+y)=f(x)-f(y)+2 x y+1$ or all $x, y \in R$ ......(i) Putting x = y = 0, we get $f(0)=f(0)-f(0)+0+1 \Rightarrow f(0)=1$ Now, $f'(x)=\lim\limits_{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0} \frac{f(x)-f(h)+2 x h+1-f(x)}{h}$ $\Rightarrow f'(x)=\lim\limits_{h \rightarrow 0}\left\{2 x-\frac{f(h)-1}{h}\right\}$ $\Rightarrow f'(x)=2 x-\lim\limits_{h \rightarrow 0} \frac{f(h)-f(0)}{h}=2 x-f'(0)=2 x-1$ |