Three pipes A, B and C when opened together can fill a tank in $\frac{5}{2}$ hours. Pipes B and C together take 3 hours to fill the tank while pipe A and C together take 4 hours to fill the tank. How long will the pipes A and B together take to fill the tank completely ? |
$6\frac{8}{13}$ $3\frac{8}{13}$ $5\frac{8}{13}$ $4\frac{8}{13}$ |
$4\frac{8}{13}$ |
The correct answer is option (4) → $4\frac{8}{13}$ Let pipe A can fill the tank in x hour → work = $\frac{1}{x}$ Let pipe B can fill the tank in y hour → work = $\frac{1}{Y}$ Let pipe C can fill the tank in z hour → work = $\frac{1}{z}$ and, $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{2}{5}$ [Given] ...(1) $\frac{1}{y}+\frac{1}{z}=\frac{1}{3}$ ...(2) $\frac{1}{x}+\frac{1}{z}=\frac{1}{4}$ ...(3) Eq. (1) - Eq. (2), $\frac{1}{x}=\frac{2}{5}-\frac{1}{3}=\frac{6-5}{15}=\frac{1}{15}$ Eq. (1) - Eq. (3), $\frac{1}{y}=\frac{2}{5}-\frac{1}{4}=\frac{8-5}{20}=\frac{3}{20}$ $∴\frac{1}{x}+\frac{1}{y}=\frac{1}{15}+\frac{3}{20}=\frac{4+9}{60}=\frac{13}{60}$ ∴ A and B together can fill tank in $\frac{60}{13}=4\frac{8}{13}hr$ |