The solution set of the inequality $\frac{7x-4}{3}>\frac{9x-3}{7}+\frac{x-5}{9}, x\in R$ is : |
$\left[\frac{22}{59}, ∞\right]$ $\left(\frac{59}{22}, ∞\right]$ $\left(\frac{22}{59}, ∞\right)$ $\left(\frac{2}{5}, ∞\right)$ |
$\left(\frac{22}{59}, ∞\right)$ |
The correct answer is Option (3) → $\left(\frac{22}{59}, ∞\right)$ $\frac{7x-4}{3}>\frac{9x-3}{7}+\frac{x-5}{9}$ $\frac{7x-4}{3}>\frac{9(9x-3)+7(x-5)}{63}$ $\frac{7x-4}{3}>\frac{81x-27+7x-35}{63}$ $\frac{7x-4}{3}>\frac{88x-62}{63}$ $21(7x-4)>88x-62$ $147x-84>88x-62$ $59x>22$ $x>\frac{22}{59}$ $⇒\left(\frac{22}{59}, ∞\right)$ |