If $A=\begin{bmatrix}1&0\\0&0\end{bmatrix},B=\begin{bmatrix}0&0\\3&0\end{bmatrix}$ then |
$AB=0, BA≠0$ $AB = 0, BA = 0$ $A^2≠A$ $B^2≠0$ |
$AB=0, BA≠0$ |
The correct answer is Option (1) → $AB≠0, BA≠0$ Given matrices: $A = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}$, $B = \begin{bmatrix}0 & 0 \\ 3 & 0\end{bmatrix}$ Compute $AB$: $AB = \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} \begin{bmatrix}0 & 0 \\ 3 & 0\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 0 & 0\end{bmatrix} = 0$ Compute $BA$: $BA = \begin{bmatrix}0 & 0 \\ 3 & 0\end{bmatrix} \begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix} = \begin{bmatrix}0 & 0 \\ 3 & 0\end{bmatrix} = B \neq 0$ Correct statements: $AB = 0, BA \neq 0$ |