For the function $f(x) = x^{\frac{1}{x}},x>0$, which of the following are correct? (A) $x = 0$ is the only point where extremum may occur. Choose the correct answer from the options given below: |
(A), (B) and (D) only (A) and (C) only (C) and (D) only (B) and (D) only |
(B) and (D) only |
The correct answer is Option (4) → (B) and (D) only Given function: $f(x) = x^{1/x}, \; x>0$ Take natural log: $y = x^{1/x} \Rightarrow \ln y = \frac{1}{x} \ln x$ Differentiate w.r.t x: $\frac{1}{y} \frac{dy}{dx} = \frac{d}{dx} (\frac{\ln x}{x}) = \frac{1 - \ln x}{x^2}$ Set derivative = 0 for extrema: $\frac{1 - \ln x}{x^2} = 0 \Rightarrow 1 - \ln x = 0 \Rightarrow \ln x = 1 \Rightarrow x = e$ Check maximum: $f(x)$ has a maximum at $x=e$ Maximum value: $f(e) = e^{1/e}$ Correct statements: (B) and (D) |